
Supplementary Text 2: Bayesian parameter re-
finement

With the assumptions that parameter priors and data error are normally dis-
tributed [1, 2, 3], the task of identifying the posterior parameter values using the
Bayesian methodology of maximum a posteriori (MAP) is equivalent to solving
a weighted minimization problem. The covariance matrix for the prior distribu-
tion Ck is taken to have a diagonal structure reflecting parameter uncertainties
given in [3]: for parameters ki which have an informative prior (that is, those

given in [3] as well as rApoB
in ), (Ck)ii is the variance of the prior distribution; for

parameters which have an uninformative prior (namely, kApoB
out , kLDL

out,linear, Emax

and EC50), (Ck)ii =∞. That is, the following prior distribution is assumed:

p(k) ∝ exp

(
−1

2
(k − kprior)TC−1

k (k − kprior)
)
. (1)

Let dDGi
denote the vector of calibration data for each of 3 the dose groups, such

that DGi ∈ {80mg, 180mg, 420mg}. We divide the set of parameters into those
that are common across dose groups, kcomm, and those that vary between the 3
dose groups kDGi , where DGi ∈ {80mg, 180mg, 420mg}. In particular, the latter

set consists of the following 3 parameters: kDGi = {kABCA1, r
VLDL
in , rApoB

in },
while kcomm consists of the remaining parameters listed in Table ??. For each
parameter set corresponding to a dose group, [kcomm; kDGi

], let G([kcomm; kDGi
])

denote the nonlinear mapping from the model parameters to the observation,
representing the model simulation of the data. Furthermore, for each dose group
DGi, let CdDGi

denote the diagonal matrix with the entries representing SEM
of the corresponding data points. Hence, for each dose group, the conditional
distribution [2] of the data given the model parameters is:

f(dDGi |[kcomm; kDGi ]) ∝

exp

(
−1

2
(G([kcomm; kDGi

])− dDGi
)TC−1

dDGi
(G([kcomm; kDGi

])− dDGi
)

)
.

For each dose group, the posterior distribution q([kcomm; kDGi
]|dDGi

) is given by
the product of terms f(dDGi

|[kcomm; kDGi
]) and p(k). Hence, to find the MAP

solution which minimizes the posterior, the following nonlinear least squares
problem is solved: with the objective function for each dose group defined as,

χ2
DGi

([kcomm; kDGi
]) ≡

(G([kcomm; kDGi ])− dDGi)
TC−1

dDGi
(G([kcomm; kDGi ])− dDGi)

+([kcomm; kDGi ]− kprior)TC−1
k ([kcomm; kDGi ]− kprior),

the MAP solution, kMAP, is the minimizer for the sum over the 3 dose groups:

kMAP ← min
[kcomm;kDG80mg ;kDG180mg ;kDG420mg ]

80mg,180mg,420mg∑
DGi=

χ2
DGi

([kcomm; kDGi ]).
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The above nonlinear minimization problem was solved using genetic algorithm
ga from the Matlab R© Global Optimization Toolbox of MathWorks1. The hybrid
option was selected with the following settings: 100 generations of the genetic
algorithm was run with a PopulationSize=300, followed by constrained mini-
mization with the setting MaxFunEvals=20000, MaxIter=500. In all numerical
integration of ODEs, the relative and absolute tolerances were set to 10−10 and
10−12 respectively. The obtained solution kMAP is listed in Table 2.
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